n&(n-1)作用:将n的二进制表示中的最低位为1的改为0,先看一个简单的例子: n = 10100(二进制),则(n-1) = 10011 ==》n&(n-1) = 10000 可以看到原本最低位为1的那位变为0。 弄明白了n&(n-1)的作用,那它有哪些应用?
-
求某一个数的二进制表示中1的个数 while (n >0 ) { count ++; n &= (n-1); }
-
判断一个数是否是2的方幂 n > 0 && ((n & (n - 1)) == 0 )
-
计算N!的质因数2的个数。 容易得出N!质因数2的个数 = [N / 2] + [N / 4] + [N / 8] + .... 下面通过一个简单的例子来推导一下过程:N = 10101(二进制表示) 现在我们跟踪最高位的1,不考虑其他位假定为0, 则在 [N / 2] 01000 [N / 4] 00100 [N / 8] 00010 [N / 8] 00001 则所有相加等于01111 = 10000 - 1 由此推及其他位可得:(10101)!的质因数2的个数为10000 - 1 + 00100 - 1 + 00001 - 1 = 10101 - 3(二进制表示中1的个数)
推及一般N!的质因数2的个数为N - (N二进制表示中1的个数)
目前看到只有这些应用,但只要理解了n&(n-1)的原理及作用,在碰到相关问题时也会比较容易解决。